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Abstract—A multivariate statistical procedure for solving problems of estimating physical parameters on
the basis of data from measurements with multichannel equipment is described. Within the multivariate
procedure, an algorithm is constructed for estimating the energy of primary cosmic rays and the exponent
in their power-law spectrum. They are investigated by using the KLEM spectrometer (NUCLEON
project) as a specific example of measuring equipment. The results of computer experiments simulating
the operation of the multivariate procedure for this equipment are given, the proposed approach being
compared in these experiments with the one-parameter approach presently used in data processing.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Highly precise measurements of energy are re-
quired in order to solve many important problems in
cosmic-ray physics—for example, in order to localize
the break in the power-law spectrum of primary cos-
mic rays. The smaller the error in measuring energy,
the higher the probability of correctly interpreting
these measurements and the higher the accuracy in
determining the parameters of the break in the spec-
trum and other features of the energy spectrum in a
given range. Requirements for the accuracy in mea-
suring energy become especially stringent in the case
of low statistics, since, among all statistical factors,
it is the volume of statistics that has the strongest
effect on the magnitude of errors in determining the
parameters of the break [1].

With the aid of modern measuring equipment,
one can obtain vast amounts of digitized information.
For example, a strip silicon detector that is used in
the KLEM spectrometer (NUCLEON project [2, 3])
to record the angular distribution of secondary par-
ticles makes it possible to measure simultaneously
pulse heights in a few hundred channels, each of
the channels carrying information about the primary-
particle energy. In the present study, we propose,
for the example of a computer model of the KLEM
spectrometer, a multivariate procedure for processing
data obtained by recording cosmic rays (it should
be emphasized, however, that problems of this type
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admit a similar solution for any multichannel detector
or any multiparameter measuring equipment).

The NUCLEON project is aimed at developing
recording equipment that is intended for studying
cosmic rays (protons and nuclei) over a broad energy
range and which would be characterized by a rela-
tively low weight and a high sensitivity. The KLEM
measuring procedure essentially consists in deter-
mining the primary-particle energy from the lateral
density distribution ρ(x, y) of the flux of secondary
particles produced in a thin target (first inelastic-
interaction event) and bred in an ultrathin push-out
device [4]. Two strip-detector matrices orthogonal
to each other, the signal Ni from each of the strip
detectors being proportional to the ionization loss in
the ith strip, are used to measure ρ(x, y). We will refer
to the signal Ni or to any other data of multichan-
nel measuring equipment as measured variables and
to physical quantities (for example, primary-particle
energy) to be determined on the basis of these mea-
surements as estimated parameters.

We will consider two types of problems that can be
solved optimally—that is, to the highest possible pre-
cision within a broad class of algorithms. These are
problems of deriving estimates on the basis of multi-
variate data from multichannel equipment—first, one
or a few physical quantities not measurable directly [5]
(for example, primary energy, charge, etc.) and, sec-
ond, the exponent of the power-law primary spec-
trum.
c© 2005 Pleiades Publishing, Inc.
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1. DETERMINATION OF PRIMARY ENERGY
IN EACH INDIVIDUAL EVENT

The simplest multivariate method—this is the
method of obtaining, for a random vector, a linear
estimate that corresponds to the best (least) mean-
square deviation—makes it possible to derive, for
the problem of estimating, on the basis of data
from measurements with multichannel equipment,
one or a few physical parameters not measurable
directly, a solution that would be more precise than
that provided by any other linear algorithm for their
determination [6]. For the KLEM spectrometer, this
statement implies that, for any choice of coefficients
of the measured variables Ni in an empirical or a
speculated formula for estimating the primary energy,

E =
∑

i

CiNi + C0,

the estimated value of E would not be better than
that which is obtained by applying the multivariate
procedure.
Despite the linearity of the method in question,

its multivariate character by far compensates for this
restriction: although any of the physical quantities
measured experimentally is only taken into account
within a linear dependence, numerous relations be-
tween the measured variables and the estimated pa-
rameter, as well as the interplay of the measured vari-
ables themselves, are included in the procedure in the
best possible way. In practice, this algorithm therefore
works much better than any “simplified” procedure of
data treatment via replacing all variables measured
with the aid of expensive equipment by one variable
representing their combination, whereupon one con-
structs a nonlinear dependence of an unknown quan-
tity on this variable. By way of example, we indicate
that, within the method developed previously by our
group [4] for determining primary energy by means of
the KLEM spectrometer, one replaces a few thousand
variablesNi by only one variable

S =
m∑

i=1

{ln2(2ri/H)}Ni, (1)

where ri is the distance between the ith strip, which
recorded the signal Ni, and the axis of a shower of
secondary particles andH is the distance between the
strip-detector plane and the interaction point. More-
over, there are various methods for taking nonlinear-
ities into account even within multivariate strategies
in the case where the importance of these nonlineari-
ties is suggested by physical considerations.
In order to realize this method, the energy E is

treated as a random variable, while all of the m mea-
sured variables (for example, signals from the de-
tector strips) are treated as the coordinates of an
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m-dimensional random vector (it is denoted here by
ξ). After that, a linear estimate of the quantity E is
formed on the basis of the entire body of information
available from measurements; that is,

Eest =
m∑

i=1

biξi + c, (2)

where the constant coefficients bi and c are chosen in
such a way as to minimize the mean-square deviation
of the estimate of E from its true value (mean-square
error):

M(Eest − E)2 =

(
m∑

i=1

biξi + c − E

)2

∼ min (3)

{in relation to any other linear estimate of E}.
Here, M symbolizes the expectation value.
The sought values of the coefficients appearing in

the formula for estimatingE are given by the theorem
quoted in [6]; that is,

bi = (SEξ · S−1
ξ )i, c = ME − SEξ · S−1

ξ Mξ, (4)

where Sξ is the autocovariance matrix for the random
vector ξ, SEξ is the mutual covariance matrix for E
and ξ, and the index i after a parenthesis labels the ith
coordinate of a vector. Instead of unknown covariance
matrices and expectation-value vectors, we use their
unbiased estimates obtained on the basis of data from
a learning sample (that is, a sample characterized
by a rather large volume and specially simulated for
estimating unknown coefficients), for example,

Mξ ≈ 〈ξ〉 =
1
nt

nt∑
i=1

ξi, (5)

SEξ =
1

nt − 1

nt∑
i=1

(Ei − 〈E〉)(ξi − 〈ξ〉)T,

where nt is the volume of the learning sample; ξi

and Ei are the ith realizations of the vector ξ and
the energy E, respectively; angular brackets denote
averaging; and T denotes transposition.
In general, the algorithm used to estimate energy

involves the following steps:
(i) The response of the device to the passage of

a beam of primary particles through the measuring
equipment is simulated, their energy spectrum being
preset; in other words, there occurs the formation of a
learning sample.
(ii) The algorithm of estimation by formulas (2),

(4), and (5) is formulated.
In addition, one can incorporate, into the proce-

dure being developed, one or a few extra parameters
that would describe our a priori ideas of the character
5
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of the statistical relationship (more precisely, of the
nonlinearity present in this relationship, since all of
the linear correlations are estimated automatically)
between measured and (or) estimated variables. The
parameters themselves can be chosen on the ba-
sis of physical considerations, while their optimum
values are fixed by using the results of a numerical
(computer) experiment that simulates the operation
of the procedure being developed. It follows that the
formation of yet another random sample (a test one)
is necessary, and this is the next step.

(iii) The test sample is formed by simulating the
operation of the measuring device, and a computer
testing of the procedure of estimation is performed on
the basis of this new sample. After that, the error in
the estimation on the basis of (3) is calculated, and
the optimum values of all unknown parameters of the
method are determined as those that minimize the
error of the estimation.
As to the form of the energy spectrum of the learn-

ing and test samples, it must be determined by the
special features of a concrete applied problem to be
solved by means of the above algorithm for estimating
the primary-particle energy. In order to improve the
accuracy of the estimation, it is necessary to include
a greater amount of various a priori information about
the physical process being studied. Yet another im-
portant comment is in order. For a criterion that the
procedure being developed must satisfy, one can take
not only the condition in (3), which requires that the
absolute error in estimating energy, M(Eest −E)2, be
minimized. The algorithm in question can be mod-
ified in such a way that it would minimize the di-
mensionless relative error M((Eest − E)/E)2, which
has a clearer meaning. The condition in (3) will then
assume the form

M((Eest − E)/E)2 (6)

=

((
m∑

i=1

biξi + c − E

)
/E

)2

∼ min

{in relation to any
other linear estimate of E}.

After some simple algebra, this problem reduces to
the preceding one. The ingredients of the algorithm
described in items (i)–(iii) and used to determine the
primary-particle energy undergo no changes, with the
exception of the formula for determining, on the basis
of a simulated learning sample, the coefficients bi and
c in expression (2) for Eest; that is,

bi = (ΣẼξ̃ ·Σ
−1

ξ̃
)i, (7)

c = {1/M(1/E2)}{M(1/E) − ΣẼξ̃ ·Σ
−1

ξ̃
M(ξ/E2)},
PH
where ξ̃ = {1/E}{ξ −M(ξ/E2)/M(1/E2)}; Ẽ =
1 − (1/E)M(1/E)/M(1/E2); and Σξ̃ and ΣẼξ̃ are
correlation (that is, noncentered) matrices, whose
sample estimates are obtained in a way similar to that
in (5):

Σξ̃ =
1
nt

nt∑
i=1

ξ̃i · ξ̃Ti , ΣẼξ̃ =
1
nt

nt∑
i=1

Ẽiξ̃
T
i . (8)

In contrast to what we have in (2) and (4), the esti-
mate of energy, Eest, is no longer unbiased upon such
a modification; that is, MEest 
=ME.
Finally, we would like to dwell at some length

on the parameters that make it possible to take into
account, within the chosen procedure, the nonlinear-
ity of the physical processes being considered. First,
we note that, even in the course of computer exper-
iments that relied on a one-dimensional algorithm
for estimating the primary-particle energy and which
employed the artificial variable S (1), it was found that
the tightest correlation is observed between E and
Na

i , where a ≈ 1.2–1.4. This circumstance, as well
as the case where the tightest correlation would take
place between an unknown parameter (E) and any
arbitrarily complicated known function of measured
variables, can readily be taken into account within
the multivariate algorithm for estimation as well. In
order to include this a priori information, it is sufficient
to modify appropriately, from the outset, the input
database and to employ, in the following, data on Na

i
rather than on the recorded signalsNi themselves.
Yet another factor that enables one to take ef-

ficiently into account physical processes underlying
the operation of the measuring equipment is inherent
in the computational procedure of the multivariate
method for estimation [7]. The point is that we re-
alized the algorithm of pseudoinversion of the corre-
lation matrix [8] with the aid of only a few maximal
singular quantities whose number is determined in
a computer experiment as that which minimizes the
error in estimating energy. This algorithm implements
some kind of “filtration” of small-scale, insignificant,
and spurious interrelations stemming from insuffi-
ciently vast statistics and concurrently removes dif-
ficulties associated with addressing ill-posed prob-
lems.
As applied to the KLEM spectrometer, the algo-

rithm for estimating energy is the following:
(i) The form of the cosmic-ray energy spectrum

that is proposed to be recorded in a simulated or an
actual experiment is chosen (for example, a power-
law spectrum or a few monochromatic beams of fixed
energy). The form of the learning and the test sample
is chosen accordingly for a subsequent accumulation
of computer statistics. The type of error—the absolute
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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error, as in (3), or the relative error, as in (6)—is
chosen.
(ii) The beam of primary particles belonging to the

sort in which we are interested and having the preset
form of the energy spectrum (see the preceding item)
is simulated at the input of the computer model of the
detector. Preset values of the primary energy E and
the measured values of the signal Ni are successively
recorded in a file for each of the simulated events
that involve the passage of beam particles through
the device. The learning sample E,Ni1, E,Ni2, . . . ,
E,Nin is formed, and allNi are transformed into Na

i ,
where the constant a is taken to be unknown for the
time being.
(iii) The unknown constants of the algorithm are

evaluated by formulas (4) and (5) or (7) and (8).
(iv) The testing sample is formed in a way similar

to that described in item (i) of the algorithm, the
energy of each particle from this sample is estimated,
and the error in (3) or in (6) is calculated by means of
averaging over the entire sample. The optimum value
at which the error is minimal is determined for the
parameter a. Formula (2) for estimating the primary
energy has now been fully specified, since the values
of all constants appearing in it have been determined.
(v) A test beam having the structure, spectral

shape, and intensity in which were are interested is
transferred to the input of the computer model of the
measuring equipment (and, in the future, to the input
of the actual device); the energy of each particle in the
beam is estimated; and the error in these quantities is
calculated.
We will now present the results obtained by ap-

plying the above procedure to solving two problems
within one general problem of reconstructing the en-
ergy of primary particles. The first of these is that
of determining the energy of each particle from a
beam having a power-law energy spectrum, while the
second is that of determining the energies of particles
from a few beams of monochromatic energy between
E = 1011 and E = 1015 eV.
Only protons incident orthogonally to the measu-

ring-equipment plane were simulated in all of the
cases considered here. This simulation was based
on the GEANT 3.21 package [9]. High-energy in-
teractions of hadrons were described with the aid of
the QGSJET generator [10], while their low-energy
interactions (up to 50 GeV) were treated by using the
FLUKA generator [9]. The applicability of thesemod-
els to describing hadron interactions was confirmed
by a comparison with experimental data [10, 11].
Within the first problem, it is assumed that we

know the shape of the actual energy spectrum. This
is a power-law function, but it is not necessary that
its exponent be known to a high precision. In order
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to take into account this a priori information, a ran-
dom sample for learning our procedure must be taken
precisely from a power-law distribution characterized
by the presumed exponent value γ. For a criterion,
we took the relative error. According to the results
of the simulation, the mean-square error in estimat-
ing energy was 49%. The one-dimensional method
that employs the variable S yields 56%. These values
receive overwhelming contributions from low-energy
events, since they result from averaging over a steeply
descending power-law spectrum.
In the second problem, where monochromatic

beams of energy ranging between 1011 and 1015 eV
form the test sample, we are equally interested in
energy values over the entire range on a logarithmic
scale, from E = 1011 to E = 1015 eV; therefore, a
random sample from an energy spectrum such that
the logarithm of energy is uniformly distributed over
the entire range that we chose must be taken to
be learning. Such a sample was formed by about
500 events over the entire energy range covering five
orders of magnitude. The volume of each of six test
samples monochromatic in energy ranged between
100 and 500 events.
The results of estimating energy are given in Ta-

ble 1 for several values of the parameter a, which
characterizes nonlinearity. In order to compare these
results with those that emerge from the application
of the already existing procedure used within the
KLEM–NUCLEON project to estimate energy, sim-
ilar errors were calculated for the same test samples
bymeans of the algorithmbased on the single variable
S in (1). We note that, in contrast to what was done
previously in [4], we did not perform any low-energy
truncation in calculating these errors—we took into
account the entire body of statistics generated for
test samples. Moreover, it is of importance that, as a
matter of fact, the errors of the earlier procedure were
calculated for the same data as those that were used
in the algorithm itself to construct the calibration
curve (thus, it was an a priori known energy that was
subjected to reconstruction). This means that, within
the earlier algorithm, it would be natural to expect
even a poorer accuracy of reconstruction for different
samples.
The last column of Table 1 gives the results ob-

tained previously in [4] from computer experiments
aimed at estimating the primary-particle energy with
the KLEM spectrometer, where the error was calcu-
lated by using incomplete statistics, its part at the
lowest energies being eliminated. Albeit being incor-
rect from the mathematical point of view, this proce-
dure did not lead to loss of information significant for
the ensuing data treatment, since the reconstructed
energy values were further used directly to construct
5
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Table 1. Relative error in reconstructing energy (in %)

E, eV

Multivariate method One-dimensional method employing the parameter S

a = 1.2 a = 1.3 a = 1.4 a = 1.5 full statistics result obtained in [4] without the
low-energy part of statistics

1011 46 43 37 33 92 72

1012 58 59 62 64 103 69

1013 61 61 62 64 101 61

1014 60 62 63 65 95 55

1015 63 66 69 73 83 56
the primary spectrum by means of histograms. The
region of low energies is of no interest from this point
of view, whereas the tail in the region of underesti-
mated values of Eest makes a significant contribution
to the total error, as is suggested by a comparison
of the data in the last two columns of Table 1. The
algorithm that will be proposed in the present study
for reconstructing the exponent in the power-law
spectrum employs only an estimate of 〈ln E〉 rather
than estimates of energy.

2. DETERMINATION OF THE EXPONENT
IN THE PRIMARY POWER-LAW SPECTRUM

In order to reconstruct the exponent γ in the en-
ergy distribution of cosmic rays,

p(E) =
γ − 1
E0

(
E

E0

)−γ

(9)

(E0 is the left boundary of the spectrum), and the
shape of the spectrum, we previously used the tradi-
tional procedure for plotting histograms on the basis
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Fig. 1. Density of the primary energy distribution (solid
curve, based on an analytic form) before and (dashed
curve, constructed on the basis of a histogram) after the
trigger.
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of reconstructed energy values [12, 13]. This proce-
dure involves a large error, which is difficult to esti-
mate, but it has long since become a conventional tool
in these realms. Since the method proposed in Sec-
tion 1 for estimating energy leads to unbiased results
and involves aminimummean-square error, it is quite
natural to expect that even a direct application of the
traditional algorithm of reconstructing the spectrum
at energy values found by the new method, which is
not in use at the present time, would lead to a higher
precision in reconstructing the spectrum.
One of the most serious difficulties in reconstruct-

ing the spectrum is that, in simulating the operation
of the KLEM spectrometer, one performs a “multi-
step” selection of events that the detector used would
record. As a result, the shape of the primary spectrum
is severely distorted, so that even a perfectly precise
measurement of energies of particles recorded by the
detector would give no way to reconstruct their spec-
trum at the input of themeasuring equipment (Fig. 1).
The selection criterion results in that the exponent
γ calculated by the maximum-likelihood method for
the primary spectrum having the lower boundary at
E0 = 1 TeV is underestimated to become γest = 2.58
(in the case of a precise measurement of the energies
of all particles that passed a triggering selection of
particles) instead of γ0 = 2.70, whereas, for the same
volume of the sample, the statistical uncertainty in
estimating γ can be determined as

σγest ∼ σ{1/ ln(E/E0)} = 0.017

[on the basis of formula (10) below, which provides
a realization of the method in question in the case of
precise measurements].

2.1. Spectrum Unbounded from the Right

In order to estimate the exponent γ in the power-
law distribution by the maximum-likelihood method
(MLM), one can make use of the formula

γest = 1 + 1/(〈ln E〉 − ln E0). (10)
HYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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The quantity 〈ln E〉 can be found by averaging the
logarithms of the measured energy values only if the
energy is measured without errors or if the errors
in determining lnE do not depend on energy, but,
in either case, this is an idealization—otherwise, the
distribution ofmeasured energies is the convolution of
the primary spectrum with a function that describes
distortions introduced by the measuring device. In
the problem at hand, an additional distortion of the
spectral shape arises even at the preliminary stage of
event selection by instrumental triggers. Therefore,
we applied a procedure that immediately yields the
most precise estimate of ln E—namely, a linear esti-
mate that is constructed for ln E treated as a random
variable and which is the best in the sense of the
mean-square deviation. In contrast to the method
employing the parameter S, this method yields un-
biased results, guaranteeing that the respective esti-
mate of 〈ln E〉 will not suffer from systematic under-
or overestimations.
The algorithm used to estimate the exponent of the

primary power-law spectrum is the following:
(i) The “preliminary” step consists in choosing a

few values of γ = γ0 from the interval in which we are
interested. In all, we employed three values of γ0 in our
numerical experiments (this was sufficient to ensure a
fairly high precision).
(ii) For each of the chosen values of γ0, two ran-

dom samples are taken from the power-law spectrum
that has this exponent. The use of precisely a power-
law distribution for learning the method involves tak-
ing into account additional a priori information. In
the procedure implemented further to reconstruct the
logarithm of the energy for each γ0, one sample will
be used as a learning one, while the other is taken to
be a test one.
(iii) For each individual event of the test sample,

ln E is reconstructed by formulas (2), (4), and (5),
where the random variable E is replaced by ln E. For
a learning sample, we employ that which features
fixed γ0 (beginning with the first one), while, for a
test sample, we successively take samples involving
each of the three values of γ0 (including that which
corresponds to the learning sample).
(iv) For each of the three sets of ln E that were

determined at the preceding step, a preliminary es-
timate of γ is found by formula (10). These will be
“preliminary” estimates of γ, the true values being
equal to the first, the second, and the third of the γ0

values, respectively; the learning of the procedure was
performed by using one (initially, the first) of these γ0

values.
(v) The procedures of steps (iii) and (iv) are re-

peated by using, for a learning sample, the sample
that involves, first, the second and, then, the third
value of γ0. Thus, we performed the procedure for
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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Fig. 2. Estimating γ on the basis of the linear depen-
dence γ(γprelim): (open circles) “learning” points, (solid
line) interpolation straight line corresponding to the least
squares method, (thick dashed lines) ultimate estimates
of the parameter γ, and (dotted lines) true values of the
estimated γ.

reconstructing ln E three times for each of the three
γ0 values, thereby deriving nine sets of reconstructed
values of ln E and the corresponding “preliminary”
estimates of γ0: three estimates for the first value
of γ0, three estimates for the second one, and three
estimates for the third one. The three estimates of
the same value of γ0 differ in that different learning
samples (successively, the samples involving the first,
the second, and the third value of γ0) were used to
obtain them.
(vi) An interpolation curve representing the de-

pendence of the true value of γ on its “preliminary”
estimate is constructed on the basis of the points
found at the preceding step (in our case of three
points, we use a linear function). For each of the
three values of γ0, we construct an individual inter-
polation dependence. For cases like that in which the
estimated value is much greater or much less than
the known one, we thereby obtain the possibility of
comparing the quality of the developed procedure for
different values of γ0 preassigned for learning this
procedure.
(vii) The “ultimate step” consists in finding the

estimates of the exponent γ that are corrected with
the aid of the three interpolation dependences con-
structed at the preceding step. An example of how the
procedure outlined here is represented graphically is
given in Fig. 2.
We have performed computer experiments aimed

at estimating the exponent of a power-law proton
spectrum (for a vertical incidence of the beam to the
detector plane). In order to compare our multivariate
5
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Table 2. Estimates of the exponent γ in the form 〈γest〉 ± ∆γ

True
values
of γ

N = 100, σMLM = 0.18 N = 200,
σMLM = 0.12

N = 300,
σMLM = 0.10

N = 400,
σMLM = 0.09

One-di-
mensional
method
involving
the param-
eter S

Multivariate method One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

One-di-
mensional
method
involving
the param-
eter S

Multi-
variate
method,
γ0 = 2.7

γ0 = 2.7 γ0 = 3.0 γ0 = 3.3

2.8 2.81 2.81 2.81 2.81 2.80 2.80 2.81 2.79 2.78 2.79
± 0.29 ± 0.30 ± 0.31 ± 0.30 ± 0.21 ± 0.22 ± 0.15 ± 0.17 ± 0.13 ± 0.15

2.85 2.90 2.83 2.85 2.85 2.88 2.84 2.84 2.83 2.86 2.84
± 0.33 ± 0.32 ± 0.31 ± 0.30 ± 0.22 ± 0.22 ± 0.13 ± 0.18 ± 0.13 ± 0.16

2.9 2.90 2.89 2.91 2.91 2.92 2.89 2.88 2.89 2.87 2.89
± 0.31 ± 0.30 ± 0.29 ± 0.30 ± 0.24 ± 0.21 ± 0.16 ± 0.17 ± 0.14 ± 0.16

3.1 3.19 3.14 3.16 3.13 3.11 3.14 3.13 3.13 3.15 3.13
± 0.46 ± 0.27 ± 0.26 ± 0.27 ± 0.29 ± 0.19 ± 0.20 ± 0.15 ± 0.19 ± 0.13

3.15 3.24 3.17 3.17 3.17 3.22 3.18 3.20 3.17 3.16 3.18
± 0.44 ± 0.26 ± 0.25 ± 0.24 ± 0.34 ± 0.18 ± 0.25 ± 0.15 ± 0.19 ± 0.13

3.2 3.20 3.16 3.16 3.17 3.13 3.15 3.09 3.16 3.13 3.15
± 0.43 ± 0.26 ± 0.25 ± 0.26 ± 0.25 ± 0.18 ± 0.21 ± 0.15 ± 0.19 ± 0.14
procedure with that which employs one parameter,
the exponent γ was estimated by the two methods as
applied to the same simulated data—that is, by the
algorithm that employs a multivariate statistical esti-
mation of the logarithm of energy and by the method
that reconstructs energy on the basis of the parameter
S (1).

The learning of the multivariate method was per-
formed by using three proton beams having a power-
law energy spectrum whose exponent γ0 takes the
values of 2.7, 3.0, and 3.3. The exponent was esti-
mated for beams characterized by a set of γ values in
the range between 2.8 and 3.2. The number of events
in each of the learning beams was quite large (a few
thousand), but this imposed no constraints on the im-
plementation of the tested procedure in practice, since
the learning samples can be accumulated via a com-
puter simulation rather than in an actual experiment.
The test samples were taken to have a volume of 100
to 400 events—such numbers of primary protons can
be recorded by the KLEM facility on board a cosmic
vehicle.
The results of the estimation are given in Table 2.

For the purposes of visualization, the data in the
column corresponding to N = 100 and γ0 = 2.7 are
represented graphically in Fig. 3. Since the estimates
of γ that were obtained for each of the three learning
samples specified by the values of γ0 = 2.7, 3.0, and
3.3 proved to be close to one another, only estimates
PH
at γ0 = 2.7 are given in all parts of the table, with the
exception of the first one.
On the basis of the data in Table 2, one can assess

the strength of the effect that the volume of accu-
mulated data has on the accuracy of estimation. As
was indicated above, the statistical uncertainty of an
estimate due exclusively to the finiteness of a sample
(the energy is known precisely) can be obtained by
using the maximum-likelihood-method formula (10).
This uncertainty is “irremovable”; therefore, it is of
paramount importance to get an idea of the order of
its magnitude playing the role of the “limiting res-
olution” (which corresponds to the case of perfectly
accurate measurements) of the procedure (or facility)
for reconstructing the exponent γ. A graph that rep-
resents this “irremovable” uncertainty as a function
of the volume of statistics, N , is given in Fig. 4 for
an interval covering a few hundred events, which is of
interest to us.
We note that, although each estimation of γ by

formula (10) involves only data associated with N
(from 100 to 400) events in Table 2, the estimates
of γ are averaged over a few N-event samples from
the entire body of available data in order to suppress
random “outliers” and to verify an unbiased character
of the results given by this procedure and the absence
of a systematic bias. However, we will have modest
statistics in an actual experiment, and this will pre-
vent averaging results over a few samples. Therefore,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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Fig. 3. Deviations from the mean value, γ − 〈γest〉, and
mean-square errors, ∆γ , for estimates of the exponent
γ (here, N = 100 and σMLM = 0.18; for the multivari-
ate method, γ0 = 2.7): (thin-solid-line histogram) ∆γ

within the one-dimensional method, (thick-dashed-line
histogram) ∆γ within the multivariate method, (closed
histogram) σMLM, (closed circles) (γ − 〈γest〉) within the
one-dimensional method, and (double triangles) (γ −
〈γest〉) within the multivariate method.

the errors ∆γ (printed in boldface type in Tables 2–
4), which can be used to assess the degree of devi-
ations from the averaged value that are expected in
performing a single experiment for statistics involving
N events, carry information of no less importance.
The smaller the factor by which this error exceeds
the “irremovable” error σMLM, which is displayed in
Table 2 and in Fig. 4, the higher the quality of estima-
tion.
It should be noted that the above comparison

of the two procedures, the one-dimensional and
the multivariate one, involves some degree of ar-
bitrariness, since no generally accepted algorithm
for reconstructing the exponent of the power-law
spectrum in processing data simulated for the KLEM
equipment exists at the present time, and this was
one of the reasons for developing a new universal
algorithm. In our case, the values of E (or ln E) that
were obtained for each of the primary particles from
simulated beams by the multivariate method and by
the one-dimensional method employing the parame-
ter S were merely subjected to identical treatment. It
follows that, as a matter of fact, the same complicated
algorithm of treatment was applied to the results of
energy measurements by both procedures.
In order to render the conditions of our numeri-

cal experiment closer to those that will be prevalent
in a live experiment, where the left boundary of the
spectrum of recorded particles will not be known, the
estimation of γ for an unknown left boundary of the
spectrum was simulated in an independent run of the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 1 200
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Fig. 4. Error in estimating γ by the maximum-likelihood
method for a precisely known primary energy versus the
volume of statistics.

calculations. We took only those events that were
selected according to the criterion Eest > E0, where
E0 is a known preset value (more rigorously, one does
not determine the energy itself within the multivariate
procedure of estimation; therefore, the selection cri-
terion has the form (ln E)est > ln E0 within this algo-
rithm). The value for the left boundary of the spectrum
was chosen, first, with allowance for the possibility of
estimating it to a fairly high degree of precision and,
second, with allowance for the volume of data that is
necessary for the present purposes. On the basis of
these considerations, we choose a few values of E0 in
the range between 2 and 4 TeV. Table 3 displays the
results obtained by estimating γ for some values of
E0.
From a comparison of these results with the data

in Table 2, it can be seen that the exponent of the
spectrumwhose left boundary is a priori unknown and
is reconstructed on the basis of results of measure-
ments performed with recording equipment can be
estimated to a precision not poorer than that attained
in estimating the exponent of the spectrum charac-
terized by a fixed value of E0.

2.2. Spectrum within the (E1, E2) Segment

In the case where one is interested in the value of
the exponent γ only within some segment of the en-
ergy spectrum of primary cosmic rays, it is advisable
to consider the spectrum in a form different from that
in (9),

p(E) =
γ − 1

E1−γ
1 − E1−γ

2

E−γ , if E ∈ (E1, E2);

p(E) = 0, if E /∈ (E1, E2).

This form of the spectrum is more complicated from
the point of view of estimating γ, since, in this case,
the maximum-likelihoodmethod yields, instead of the
direct formula (10), a nonlinear equation for γ,

γ = 1 + (E1−γ
1 − E1−γ

2 )/(E1−γ
1 {〈ln E〉 − ln E1}

(11)
5
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Table 3. Estimates of the exponent γ in the form 〈γest〉 ± ∆γ at a fixed left boundary E0 of the spectrum for γ0 = 2.7, 3.0,
and 3.3 (here,N = 100 and σMLM = 0.18)

True
values of

γ

E0 = 2 TeV E0 = 2.5 TeV E0 = 3 TeV

2.7 3.0 3.3 2.7 3.0 3.3 2.7 3.0 3.3

2.8 2.84 ± 0.232.82 ± 0.232.83 ± 0.222.85 ± 0.252.86 ± 0.242.86 ± 0.272.83 ± 0.222.83 ± 0.192.80 ± 0.21

2.85 2.83 ± 0.232.83 ± 0.242.80 ± 0.232.81 ± 0.242.79 ± 0.232.76 ± 0.252.80 ± 0.222.77 ± 0.202.80 ± 0.21

2.9 2.91 ± 0.242.91 ± 0.232.88 ± 0.222.90 ± 0.242.91 ± 0.242.92 ± 0.252.93 ± 0.232.93 ± 0.212.93 ± 0.21

3.1 3.11 ± 0.233.10 ± 0.243.08 ± 0.243.14 ± 0.253.10 ± 0.233.11 ± 0.242.97 ± 0.222.97 ± 0.203.02 ± 0.18

3.15 3.25 ± 0.283.24 ± 0.263.22 ± 0.253.27 ± 0.303.26 ± 0.293.33 ± 0.333.26 ± 0.273.23 ± 0.233.27 ± 0.27

3.2 3.19 ± 0.243.17 ± 0.233.16 ± 0.233.26 ± 0.263.30 ± 0.273.30 ± 0.283.26 ± 0.233.20 ± 0.193.20 ± 0.19
− E1−γ
2 {〈ln E〉 − ln E2}).

The algorithm of estimation exactly reproduces
that which was described above for the case of an un-
bounded spectrum, the only exception being that the
maximum-likelihood method, which underlies both
algorithms, is now realized through Eq. (11) rather
than through formula (10).
As in the case of an unbounded spectrum, the

vertical incidence of a proton beam to the detector
plane was considered in computer experiments aimed
at estimating the exponent γ within various energy
ranges. All of the parameters of the simulation were
identical to those in the preceding case. The values for
both the left and the right boundary of the spectrum
were not considered to be known and were recon-
structed on the basis of simulated data, as is described
in the preceding subsection.
For statistics including 100 events, Table 4 shows

the results for an energy interval of width 2 TeV. It

Table 4. Estimates of the exponent γ in the form 〈γest〉 ±
∆γ for the interval 2 < E < 4 TeV (here, N = 100 and
σMLM = 0.29)

True
values
of γ

One-di-
mensional
method
involving
the pa-
rameter S

Multivariate method

γ0 = 2.7 γ0 = 3.0 γ0 = 3.3

2.8 2.94 ± 0.50 2.78 ± 0.37 2.72 ± 0.36 2.70 ± 0.35

2.85 2.93 ± 0.45 2.85 ± 0.39 2.94 ± 0.37 2.77 ± 0.36

2.9 2.86 ± 0.46 2.82 ± 0.41 2.87 ± 0.37 2.74 ± 0.39

3.1 2.94 ± 0.48 3.18 ± 0.40 3.14 ± 0.36 3.04 ± 0.37

3.15 3.10 ± 0.48 3.19 ± 0.41 3.15 ± 0.36 3.07 ± 0.38

3.2 2.95 ± 0.52 3.18 ± 0.40 3.11 ± 0.37 3.00 ± 0.41
PH
can be seen that, even for so small a volume of data,
the exponent γ can be estimated within an energy
range of small width by using the proposed procedure,
albeit the uncertainty is somewhat greater than for an
unbounded spectrum. This is because the irremovable
error inherent in the maximum-likelihood method is
greater in this case. This error now depends not only
on the volume of statistics but also on the width of the
energy interval. The relationship between the actual
and the minimum possible error remains approxi-
mately identical to that in estimating the exponent γ
of an unbounded spectrum.

CONCLUSION

Multivariate procedures for processing the results
of measurements with multichannel equipment have
been developed, implemented, and tested in computer
experiments. These procedures, which are optimal
within a broad class of algorithms in the sense that
they are characterized by the highest sensitivity, are
intended for estimating (i) physical parameters inac-
cessible to direct measurements (such as the primary
energy and other features of the primary particle) and
(ii) the exponent of the primary spectrum of cosmic
rays.
The multivariate procedures for estimation have

been studied in computer experiments employing a
mathematical model for the KLEMmeasuring equip-
ment from the NUCLEON project. The following
conclusions have been drawn from the results of these
experiments:
(a) In estimating the primary-particle energy, the

multivariate procedure yields a much smaller error
(by a factor of 1.5) in relation to the one-dimensional
algorithm used previously by our group.
(b) In estimating the exponent of the spectrum

of primary cosmic rays, the multivariate procedure
works at least no poorer than the algorithm based on
a one-dimensional estimation of the energy of each
YSICS OF ATOMIC NUCLEI Vol. 68 No. 1 2005
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individual event. At the same time, the new procedure
in question, in contrast to algorithms that are aimed
at determining the exponent of the spectrum from his-
tograms on the basis of a one-dimensional estimation
of energy and which were previously applied in the
KLEM–NUCLEON project and in other investiga-
tions, is optimal in a rigorous mathematical sense, is
universal, and makes it possible to employ codes of a
single type in processing multiparameter data of any
kind.
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